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Table 1

SUMMARY OF PROGRESS

The value of a binder to a propellant system will be significantly
enhanced by the introduction of pendant high energy substituents such as
azido and nitro groups to the elastoneric backbone. We have developed
syntheses for such a purpose with the following substrates: poly(cis-
butadiene), PB, carboxy-terminated poly(butadiene-co-acrylonitrile),

CTBN and hydroxy-terminated poly(butadiene), HTPB.

For the nitration of diene polymers, the polymer is first treated
with HgCl, and NaNO, to give nitromercurated polymers. Our contribution
is the finding that phase transfer catalysts allows this reaction to pro-
ceed with water-insoluble polymers. We have also optimized the selective
formation of nitro groups. The mercury is subsequently removed by treat-
ment with a stoichiometric amount of non-nucleophilic base.

To introduce the azido group, the polymer was first treated with IC1
and NaN; to give azidoiodinated products. The iodine was subsequently
removed with t-BuOK in the presence of a crown ether. Good yields were
obtained in both reactions.

Samples of nitrated and azidinated HTPB have been submitted to Dr.
Kurt Mueller at the White Oak Laboratory for evaluation.

Progress Report

1. Nitration of Diene Polymers and Copolymers

A. Nitromercuration of Carboxy-terminated Butadiene Acrylonitrile
Copolymer (CTBN).
CTBN (PBAN) has been nitromercurated under the non-aqueous phase-
transfer conditions developed for poly(gigfl.4-butadiene).] Results are

given in Table I.
The most important conclusions reached in this study are listed below:
1) Nitromercuration beyond ca. the 20% level gives in-
soluble polymers which are unsuitable in the subse

quent demercuration reaction. 1 [ ("‘
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2) Only one equivalent of sodium nitrite is necessary.

3) The reaction proceeds cleanly and faster at 5 times
the polymer concentration used in the previous work
on poly-butadiene (MW ~ 5x10%).

4) Conditions have been found (run 2) to produce a good
yield of soluble polymer. Good selectivity for the
nitro function at the expense of nitrite ester is

Fig. 1 apparent in the IR spectrum shown in Figure 1.

5) Soluble polymer characteristically exhibits an N/Hg
ratio of >1 (nitrogen adjusted for acrylonitrile
content of original copolymer) while for insoluble
polymer this ratio is <1.

6) Upon drying (Na,S0,) methylene chloride solutions of
nitromercurated polymer deposit mercury as a gray solid.

Evidence is consistent with the reaction below.
e NOz
HgC1 H

<E|! NO;) : <E;"4J\\:) FHC e Hg (1) ]

The atomic ratio N/Hg of the final product >1 and IR
bands characteristic of nitroalkene functionality appear
at 1520 and 1340 cm™' (Figure 1).

B. Nitromercuration of Hydroxy-terminated Polybutadiene (HTPB).

HTPB nitromercurates more cleanly than CTBN under non-aqueous phase- ]
transfer conditions. Soluble nitromercurated polymer is obtained as a
viscous yellow to brown material which readily redissolves in methylene
Table 11 chloride. Data from selected runs are presented in Table Il and important
conclusions aré—Eiven bglow.

i
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1) Nitromercuration beyond the 25% level gives in-
soluble polymer,

2) Only one equivalent of sodium nitrite is necessary.

3) Conditions (run 3, Table II) have been found which
produce an excellent yield of 20% nitrated polymer
with good selectivity for formation of nitro
functionality. This selectivity is apparent in

Figure 2 Figure 2. ’

'y

4) Of the 3 types of olefin present in HTPB, the pendant
vinyl groups react most rapidly. This is clear from
IR data in Figure 2 which shews greatly reduced C-H
out of plane bending for términal vinyl (990 and 910
cm']) in nitromercurated HTPB,

] 5) As is the case for CTBN, soluble nitromercurated polymer
is characterized by N/Hg >1 while the insoluble product

= Has N/Hg <1. . However, there is no evidence for spontaneous
demercuration in the case of HTPB.

C. Demercuration of Nitromercurated Polymers

{ Studies have been conducted using poly(cis-1,4-butadiene) and HTPB.
Survey of a large number of possible conditions has led to the conclusion
that 1,5-Diazabicyclo[5.4.0]Jundecenc-5 (DBU) in methylene chloride is the
reagent of choice.

Table III - Study of demercuration stoichiometry (Tables III and IV) shows the

Table IV initial increment of base causes some loss of nitro groups as well as de-
mercuration but that subsequent increments of base while causing demercuration

Table V cause no further loss of nitro groups. A kinetic study (Table V) showed that

demercuration is rapid, 2 min. being sufficient for completion. Finally, all

our experiments revealed that a small fraction, ca. 10%, of the mercury in
the nitromercurated polymers was inaccessible to base.
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We have shown that sodium borohydride removes this residual mercury
rapidly and quantitatively (Cf run 6, Table III). At the same time
borohydride reduces the nitroalkene functions to nitroalkanes. '
HgCl X NO, ]
' NaBH
H,0/CH,C1,
X NO,

The polymers thus produced are viscous brown liquids which are readily
soluble in methylene chloride.

Figure 3 Figure 3 shows the IR spectra of nitromercurated-demercurated and

Figure 4 borohydride-treated polybutadiene. Figure 4 shows the IR spectrum of
nitromercurated-demercurated HTPB. A sample of HTPB which was nitromercurated,
demercurated and finally treated with borohydride has been supplied to Dr.
Kurt F. Mueller, Head of the Synthesis and Formulations Branch, Naval Surface
‘Weapons Center, White Oak, Silver Spring, MD.

D. lodonitration-Dehydroiodination

Our experiments on reduction of g-nitromercuri compounds reveal that
the intermediate B-nitroalkyl radicals lose NO, rapidly to produce olefin.
When olefins are treated with NO,, a small equilibrium concentration of
g8-nitroalkyl radical should be generated. Iodonitration of olefins re-
presents a successful trapping of this radical with iodine.

H

N0, + >==<" = ->——<-N02 2, x} {r«o2 (3)
H




Subsequent dehydroiodination would give nitroolefin.

H

NO |
o S e

H

We have studied this reaction using cyclohexene and 2-hexene as
model substrates. The scheme below shows transformations of cyclohexene
in diethyl ether.

i N -
12/N0; % o,
— +
dry Et20 I 1

0° cis trans
(5)
NEt3/Et,0 NEt;3/Et,0
r.t. reflux
.- fast slow
NO2

2-Hexene behaves in a similar fashion though IR indicates that some.nitrate
ester is formed as a by-product. When the solvent is changed from ethyl
ether to CH,Cl1, or THF, cyclohexene also gives substantial amounts of

nitrate ester. Initial reactions with HTPB show that nitrate ester formation
also occurs in this case but that cross-linking reactions do. not appear to

be occurring.

Since easy dehydroiodination is expected on the basis of model studies,
the major challenge is to understand the solvent effect and to control it
to produce nitro iodide products. We are currently studying this using the
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working hypothesis that the solvent effect operates by changing the
proportions of the species NO, (source of nitro iodide) and N,0, (source
of nitrate ester).

II. Azidination

A. Cyclohexene.

Reaction of NaN; and IC1 with cyclohexene follows the procedure of
Hassner and Levy2 but afforded better yields than reported. Furthermore,
using 1H-NMR and !3C-NMR, it was shown that the stereochemistry is solvent
sensitive. In CH3;CN the reaction is regiospecific to give trans-l1-azido-2-
iodocyclohexane. In CH3CN-CH,C1, medium sonie cis product was also produced.

The dehydroiodination reaction was markedly promoted by the use of
18-crown-6-ether which aids in the transfer of t-Bu0™ into the organic phase.
The reaction appears to be completed in 13 hours at 252, and the mechanism
is anti-elimination. The product is 3-azidocyclohexene which is an unstable
allyl azide which commences to decompose at 50°.

B. n-Hexene.

Azidoiodination of n-hexene led to 2-azido-1-iodohexane as the major
product and 1-azido-2-iodohexane as the minor product. Dehydroiodination of
these compounds occurred even with more ease than that found for azidoiodo-
cyclohexane. The resulting vinyl azides are more stable than the aliyl
azides; the decomposition begins at 100°.

C. Polymers.

The above reactions were successfully applied to PB, HTPB, and CTBN.
A CH3CN-CH,C1, solvent mixture is required because of the solubility
characteristics of the polymers.

Azidoiodination of the polymers generally resulted in higher yields
than the corresponding reactions with the model compounds; the yields in-
creased in the order of CTBN < HTPB < PB. The results are summarized in
Table VI.




Table VIi

Whereas the azidoiodinated polymers are all soluble in the reaction
medium,isolation of the IN,-PB and IN;-CTBN led to products which cannot
be redissolved. The IN3-HTP§Wdoes not suffer from this drawback. Con-
sequently, the azidoiodinated polymers were not usually isolated but .
dehydroiodination was carried out directly. _

The dehydroiodination was catalyzed by t-BuOK. It was found that
the optimum condition is using stoichiometric amounts of the yase (Table VII).
Less than stoichiometric quantity of t-BuOK led to incomplete dehydro-
jodination; an excess causes large loss of nitrogen. It is suspected that
the following reaction is responsible for the loss of azide groups.

N3 N3 N3 N3
-Hl RO G

/\/\/\/ S\ Y VI

I I I
s N3 N i (6)
;;k<}éﬁ\f/k\(/ —) /A\/A\/)\{/ ROH + Ny ©

(A
He 1 I
RO Gj

The azido derivatives of the polymers all have onset of decomposition
at 100°.

I11. Significance of This Work

We have demonstrated that water insoluble polymers can react efficiently
with aqueous reagents in the presence of phase transfer catalysts and that
solid to 1iquid phase transfer also is effective. Derivatives of binder
elastomers currently used by the Navy possessing pendant nitro and azido
groups have been produced. Substantial improvements over literature pro-

cedures have been devised for several reactions, especially nitromercuration

el R
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of olefins. Characterization of the substituted polymers will yield
data of great significance for design and characterization of new high
energy elastomers.
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Table IV  Demercuration of Hydroxyterminated Poly(butadiene) with DBU

Elemental % %
Sample Equiv. DBU Analysis Demercuration Denitration
TRS-111-682 - CuHo . 7No.176H92.196 - -
TRS-111-68A° 1.0 CuHg noNo.14u7H90. 0566 71.1 16
) TRS-111-688° 1.35  CyHg.o8No.147H90. 0367  81.3 16
k TRS-111-68DP 2.0 CuHg.o6No.140H95. 0003 87.6 16

aStarting nitromercurated polymer.

bA]l reactions done in CH,C1, at room temp. with 2 min. reaction time.
Reactions were quenched with 1.2 m HC1 and washed with H,0 and NH.C1 (sat.)
sol. respectively and CH,Cl, layer dried over MgSO,.
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Table V  Demercuration of Nitrowercurated HTPB with DBU (Time Study)

Time Elemental % %
Sample (Sec) Analysis_ Demercuration Denitration

' ‘ TRS-111-72A% - CyHg . Mo 1enHG0 15 0 0

TRS-111-74A° 5 CuHe 1 aNo . ounH0 . 02e 81.5 43.0

TRS-111-748P 15 CuHg . 5/No . 003HT0 0o ) 86.1 43.3

i TRS-111-74¢P 30 CuHe . 75No . 153H90 01 86.1 25.0

’ TRS-111-740P 60 CoHe. 36N 104HG0 . 023 84.8 36.6
TRS-111-73AP 120

aStarting nitromercurated polymer.

bSame amount DBU used in each reaction.
Each reaction run at room temp. in CH,C1,. Reactions were quenched by acidifi-
cation with HC1 (1.2 m) and washed with H,0 and NH,C1 (sat.) sol. respectively
1 and CH,C1, was dried over MgSO,.

About 2.66 equiv. DBU used in demercurations above,
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Table VI Azidoiodination of Butadiene Po'l_ymev'sil

[Butadiene] Solvent Reaction Time, Yield, %
Polymer Run # [IN;] CH,C1,/CH;CN hrs. Wt. Todine Nitrogen
£§ 1A 1.07 4 24 88 88 96
" 1882 " " 10 b 77 77
n ‘lBBb (1} n " 56 67 82
" 19A " 5 " 88 88 96
" 238 0.54 4 24 61 34 21
HTPB 62A 1.07 1 " 82 84 87
VYWY
" 73A 0.4 1 " b 40 35
PBAN 33A 1.07 2 25 80 76 76
VAV, ‘
" 47A " " " b 76 78 @
" 338 0.56 " " 73 40 30

4A11 reactions performed at 250 ¢C.

f bProduct was an emulsion.
Dried IN,-HTPB can be redissolved in THF, DMF, DMSO, and dioxane. These

solubility“¢Waracteristics are independent of whether the products were
worked up in the dark or with light.




Polymer
IN,-

Table VII

Run #
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Dehydroiodination of Azidoiodinated Butadiene Polynersa

t-Bu0K

lodine in Polymer

PB 54A
vy
548
54C
21F
308
29A

PBAN 57A
578
57C
64A
648
64C
48A
34A
45A
488

IN,-HTPB 71A

VUV

718
71C

0.2
0.4
0.6
1.5

0.2
0.4
0.6
0.8
0.9
0.99
1.0
1.5
2.0
2.0

0.8
0.9
0.99

% lodine

in Polymer
Initial  Final

88 52
88 40
88 21
88 0.001
88 0.1
34 0.05
82 49

" 30

" 13

" 0.1
" 0.03
" 0.03
76 0.14
" ~ 0

" 0.015

" A 0
84 15

" 8

" 8

% Nitrogen
in Polymer
Initial Final
96 63
96 n
96 63
96 48
96 50
21 22
88 75
" 77
" 75
. 72
" n
" 68
78 55
" 45
- 44
" 46
87 68
" 64
" 63

aReaction conditions: 24 hrs., 25° C, with 5 mole % of 18-crown-6 ether.
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